FULL PAPER

Reactivity of the labile complex $[MoCl(\eta^3-allyl)(CO)_2(NCMe)_2]$ with diphosphanes

Julio Pérez,*^a Dolores Morales,^a Víctor Riera,^a Amor Rodríguez^a and Santiago García-Granda^b

^a Departamento de Química Orgánica e Inorgánica/IUQOEM, Facultad de Química, Universidad de Oviedo-C.S.I.C., Oviedo, E-33071, Spain. E-mail: japm@sauron.quimica.uniovi.es; Fax: 34 985 103446

^b Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo-C.S.I.C., Oviedo, E-33071, Spain

Received 10th January 2003, Accepted 26th February 2003 First published as an Advance Article on the web 10th March 2003

The reactions of $[MoCl(\eta^3-allyl)(CO)_2(NCMe)_2]$ (1) with variable ratios of bis(dimethylphosphanyl)methane (dmpm) or bis(diphenylphosphanyl)methane (dppm) afford different products, in which the diphosphanes are acting either as a chelate, as in $[MoCl(\eta^3-allyl)(CO)_2(P-P)]$ (P–P = dmpm 2, dppm 6) and $[Mo(NCMe)(\eta^3-allyl)(CO)_2(P-P)]$ - $[\{Mo(\eta^3-allyl)(CO)_2\}_2(\mu-Cl)_3]$ (P–P = dmpm 4, dppm 8) or as a bridge as in $[\{Mo(\eta^3-allyl)(CO)_2\}_2(\mu-Cl)_2(\mu-P-P)]$ (P–P = dmpm 3, dppm 7). The analogous reaction with tetraethyldiphosphite (tedip) affords $[\{Mo(\eta^3-allyl)(CO)_2\}_2(\mu-Cl)_2(\mu-P-P)]$ (μ -Cl)_2(μ -tedip)] (5) as a single product.

Introduction

We recently reported that the complex $[MoCl(\eta^3-allyl)(CO)_2-$ (dmpm)] (2) (dmpm = bis(dimethylphosphanyl)methane) reacts with carbanionic reagents to afford the corresponding cisdicarbonyl $[MoR(\eta^3-allyl)(CO)_2(dmpm)]$ complexes. These species subsequently rearranged to the isomeric trans-dicarbonyl compounds, which then undergo the reductive elimination of the R-allyl coupling products.¹ We have prepared complex 2 by reaction of the known precursor [MoCl(n³-allyl)(CO)₂- $(NCMe)_{2}$ (1)² with dmpm, a method that has become conventional for the preparation of [MoCl(n³-allyl)(CO)₂(L-L)] (L-L = bidentate ligand) compounds.³ However, we observed that traces of other species were formed in addition to complex 2 in some of the preparations. Having ruled out the presence of an impurity in the reagents, we hypothesized that compounds with a molybdenum : dmpm ratio different from 1 : 1 were formed along with complex 2. Thus, we initiated a careful study of the reaction of the bis(nitrile) complex 1 with dmpm. Our findings are the subject of this paper.

Results and discussion

The reaction of $[MoCl(\eta^3-allyl)(CO)_2(NCMe)_2]$ (1)² with an equimolar amount of dmpm afforded $[MoCl(\eta^3-allyl)-(CO)_2(dmpm)]$ (2),¹ which could be isolated in high yield by crystallization. However, the reactions of 1 with substoichiometric amounts of dmpm yielded solutions containing two new compounds in ratios dependent of the amount of dmpm used (Scheme 1). Working with a Mo : dmpm ratio of 2 : 1, complex $[{Mo(\eta^3-allyl)(CO)_2}_2(\mu-Cl)_2(\mu-dmpm)]$ (3) was obtained as the major product and could be isolated by fractional crystallization. A yellow single crystal of 3 was used for a structural determination by X-ray diffraction. The results are displayed in Fig. 1.

The molecule of **3** consists of two identical *cis*-{Mo- $(\eta^3$ -allyl)(CO)_2} moieties linked by two chloro bridges and a dmpm bridge. Each metal center is electron precise without considering an intermetallic bond; consistently, the Mo-Mo distance (4.027(4) Å) is outside the range of direct Mo-Mo bonds.⁴

Fig. 1 Thermal ellipsoid plot (30% probability) and numbering scheme of 3. Selected lengths (Å) and angles (°): Mo–Mo 4.027(4), Mo–Cl(1) 2.627(1), Mo–Cl(2) 2.627(1); Cl(2)–Mo–Cl(1) 79.10(4).

The molecule of **3** possesses a mirror plane orthogonal to the intermetallic vector. The ¹H and ³¹P NMR data (see Experimental section) are consistent with this structure being maintained in solution.

When the reaction of 1 and dmpm was carried out using an Mo : dmpm ratio of 3 : 1, the compound [Mo(NCMe)-(η^{3} -allyl)(CO)₂(dmpm)][{Mo(η^{3} -allyl)(CO)₂}₂(μ -Cl)₃] (4) was the major product. Selective crystallization allowed its isolation, and a structural determination was carried out using single-crystal X-ray diffraction. The results are displayed in Fig. 2.

Compound **4** is a salt whose anion, consisting of two *cis*-{Mo(η^3 -allyl)(CO)₂} fragments linked by three chloro bridges, was previously found in the compound [Mo(η^3 -allyl)(CO)₂-(NCMe)₃][{Mo(η^3 -allyl)(CO)₂}₂(μ -Cl)₃].⁶ The cation of **4** is a monometallic complex with an acetonitrile and a chelating dmpm ligand bonded to a {Mo(η^3 -allyl)(CO)₂} fragment.⁷ Obviously, the formation of **4** is the result of ionization and intermolecular chloride transfer. This has also been found to be the case in the generation of the mentioned salt [Mo(η^3 -allyl)-(CO)₂(NCMe)₃][{Mo(η^3 -allyl)(CO)₂}₂(μ -Cl)₃] when the labile precursor **1** stands in solution of non-coordinating solvents prolonged times.⁶ However, there should be noted that the formation of the salt **4** upon reaction of **1** with dmpm is

Fig. 2 Thermal ellipsoid plot (30% probability) and numbering scheme of 4. Selected bond lengths (Å) and angles (°): Mo(1)-Cl(1) 2.519(2), Mo(1)-Cl(2) 2.596(2), Mo(1)-Cl(3) 2.580(3), Mo(2)-Cl(1) 2.566(2), Mo(2)-Cl(2) 2.538(2), Mo(2)-Cl(3) 2.580(2), Mo(1)-Cl(1) 1.931(10), Mo(3)-N(80) 2.220(8); Mo(3)-N(1) 2.212(8), Mo(3)-P(1) 2.458(3), Mo(3)-P(2) 2.463(3), Cl(3)-Mo(2)-Cl(2) 78.20(7), Cl(1)-Mo(2)-Cl(2) 78.03(7), Cl(2)-Mo(1)-Cl(3) 79.39(8), Cl(1)-Mo(1)-Cl(3) 77.64(8), N(1)-Mo(3)-P(1) 91.8(2), N(1)-Mo(3)-P(2) 91.5(2), P(1)-Mo(3)-P(2) 266.59(9).

instantaneous. This suggests that the presence of the strongly donating dmpm ligand promotes the ionization.

Using ³¹P NMR, we have examined how the composition of the mixtures obtained by reaction of **1** and dmpm changes with time. We found that the final formation of the dmpm-bridged bimetallic complex **3** takes place, at least in part, at the expense of the salt **4**, which, even using a Mo : dmpm ratio of 2 : 1, is initially formed as the major product. The formation of **3** from **4** implies, besides chloride transfer between molybdenum centers, a change in the coordination mode of dmpm, a process that is known to be facile for this diphosphane.⁸ Although slower than the formation of **3** from **4**, ³¹P NMR monitoring indicated that, in the presence of excess of dmpm, the binuclear complex **3** transforms into **2**.

We reasoned that using a diphosphane which is both a poor donor and a good binucleating ligand would favor the formation of a bridged bimetallic complex like **3**. To test this idea, we have chosen tetraethyldiphosphite (tedip), which is a weaker donor than bis(dialkylphosphanyl)alkanes and shows a high preference for the bridging over the chelate coordination mode. Indeed, the reaction of **1** with tedip yielded, regardless of the Mo : tedip ratio, complex [{Mo(η^3 -allyl)(CO)_2}₂(μ -Cl)₂-(μ -tedip)] (**5**) (Scheme 2), which was found to be isostructural with **3** by the results of a single crystal X-ray determination, shown in Fig. 3.

Compounds 3 and 5 are the first examples of diphosphanebridged complexes with pseudo-octahedral $\{Mo(\eta^3-allyl)-(CO)_2\}$ moieties.

The formation of similar species in the reactions of **1** with bis(diphenylphosphanyl)methane (dppm), which have been previously used to prepare the well known [MoCl(η^3 -allyl)-

Fig. 3 Thermal ellipsoid plot (30% probability) and numbering scheme of 5. Selected lengths (Å) and angles (°): Mo–Mo 3.985(2), Mo–Cl(1) 2.592(2), Mo–Cl(2) 2.588(3); Cl(2)–Mo–Cl(1) 79.45(6).

(CO)₂(dppm)]^{3c} complex, was not investigated previously. We set out to explore the possible presence of these species in the crude reaction mixtures obtained from 1 and dppm. Faller et al. reported the preparation of $[MoCl(\eta^3-allyl)(CO)_2(dppm)]$ by reaction of 1 with dppm followed by chromatographic purification.^{3c} Accordingly, we found that using a Mo : dppm ratio of 1 : 1, the main product (as shown by the 31 P NMR spectrum) was $[MoCl(\eta^3-allyl)(CO)_2(dppm)]$ (6), characterized by X-ray diffraction (Fig. 4) (Scheme 1). The structure of 6 is, in the main, similar to that of the previously characterized 1,2-diphenylphosphanylethane (dppe) derivative [MoCl(n³-allyl)-(CO)₂(dppe)].^{3c} In addition, we have observed signals due to two minor products in the ³¹P NMR spectra of the crude mixtures present before chromatography. The relative amount of these byproducts increased when Mo : dppm ratios of 2 : 1 or 3:1 were employed. One of these species, featuring a singlet at -2.33 ppm, was found to be the kinetic product and, by analogy with the results obtained with dmpm (vide supra), was believed to be the salt [Mo(NCMe)(η³-allyl)(CO)₂(dppm)]- $[{Mo(\eta^3-allyl)(CO)_2}_2(\mu-Cl)_3]$ (8). ³¹P NMR monitoring of the reaction mixtures showed an increase of two additional compounds featuring singlets at 13.02 and -2.03 ppm. The latter corresponds to the mononuclear complex 6 (vide supra). The former could be obtained as the main product using a Mo : dppm ratio of 2 : 1. This product was found to be $[{Mo(\eta^3-allyl)(CO)_2}_2(\mu-Cl)_2(\mu-dppm)]$ (7) by X-ray diffraction (see Fig. 5). The main features of the structure of 7 are similar to those of 3 (vide supra). The interconversions of 6, 7 and 8 parallel those found for the dmpm analogs (see above).

Fig. 4 Thermal ellipsoid plot (30% probability) and numbering scheme of 6. Selected bond lengths (Å) and angles (°): Mo-Cl 2.5232(9), Mo-P(1) 2.5474(10), Mo-P(2) 2.6015(9), Mo-C(2) 1.973(3), Mo-C(3) 1.941(3); P(1)-Mo-P(2) 64.47(3).

Fig. 5 Thermal ellipsoid plot (30% probability) and numbering scheme of 7. Selected bond lengths (Å) and angles (°): Mo(1)–Cl(1) 2.5793(11), Mo(1)–Cl(2) 2.6266(14), Mo(2)–Cl(1) 2.5789(13), Mo(2)–Cl(2) 2.6177(11); Cl(2)–Mo–Cl(1) 78.85(5).

In conclusion, the present work indicates that widely used diphosphanes act both as chelates and as bridges toward $\{Mo(\eta^3-allyl)(CO)_2\}$ fragments, and that chloride transfer, ionization and binucleation can occur readily in solution. The existence of these processes can be of relevance when studying the solution behavior of $[MoX(\eta^3-allyl)(CO)_2(P-P)]$ complexes, which have been used as allylic alkylation precatalysts.⁹

Experimental

All operations were carried out under an atmosphere of dry dinitrogen using Schlenk techniques. Solvents were dried over Na (hexane), CaH₂ (CH₂Cl₂ and MeOH) and distilled immediately before being used. IR spectra were registered in THF solutions. NMR chemical shifts (δ) are given in ppm, and coupling constants (*J*) in Hz. Apparent triplet is abbreviated "at" in the ¹H NMR spectra. All spectra were recorded at room temperature.

Preparation of [MoCl(η³-C₃H₅)(CO)₂(dmpm)] (2)

The addition of dmpm (50 µL, 0.32 mmol) to [MoCl- $(\eta^3-C_3H_3)(CO)_2(NCMe)_2$] (1)² (0.10 g, 0.32 mmol) in CH₂Cl₂ (10 mL) gave a red solution which was stirred for 5 min. The volume was reduced *in vacuo* to one third and hexane was added to precipitate **2** as an orange crystalline solid. Yield: 0.11 g, 94%; Anal. Calc. for C₁₀H₁₉ClMoO₂P₂: C, 32.94; H, 5.25. Found C, 32.61; H, 5.62%. IR (v_{CO}) (CH₂Cl₂): 1944s, 1845s cm⁻¹; ¹H NMR (CD₂Cl₂): δ 1.65 [at, ²J_{P-H} = 5, 6H, CH₃ dmpm], 1.73 [at, ²J_{P-H} = 5, 6H, CH₃ dmpm], 2.31 [d, ³J_{H-H} = 12, 2H, H_{anti}], 3.24 [m, 2H, CH₂ dmpm], 3.69 [m, 2H, H_{syn}], 4.75 [m, 1H, C²H]. ¹³C{¹H} NMR (CD₂Cl₂): δ 13.40 [at, ¹J_{P-C} = 13, CH₃ dmpm], 17.34 [at, ¹J_{P-C} = 14, CH₃ dmpm], 40.65 [at, ¹J_{P-C} = 23, CH₂ dmpm], 62.36 [s, C^{1,3} allyl], 98.68 [s, C² allyl], 226.68 [at, ²J_{P-C} = 8, CO]. P{¹H} NMR (CD₂Cl₂): δ -24.38.

Reaction of 1 with substoichiometric amounts of dmpm

(a) dmpm (25 µL, 0.16 mmol) was added to a solution of **1** (0.10 g, 0.32 mmol) in CH₂Cl₂ (20 mL) and the mixture was stirred for 15 min. The solution was concentrated to 5 mL and hexane was added (20 mL), causing the precipitation of an orange solid which was washed with hexane and dried *in vacuo*. By slow diffusion of hexanes into a concentrated solution of the orange solid in CH₂Cl₂ (5 mL) at -20 °C red crystals of **3** were obtained. Yield: 0.05 g, 60%. Anal. Calc. for C₁₅H₂₄Cl₂Mo₂-O₄P₂: C, 30.37; H, 4.07. Found: C, 30.14; H, 4.21%. IR (ν_{CO}) (CH₂Cl₂): 1934s, 1851s cm⁻¹. ¹H NMR (CD₂Cl₂): δ 1.82 [d, ³J_{H-H} = 10.0, 4H, H_{syn}], 1.88 [d, ²J_{H-P} = 7.0, 12H, CH₃ dmpm], 2.15 [t, ²J_{H-P} = 12, 2H, CH₂ dmpm], 3.71 [d, ³J_{H-H} = 7.0, 4H, H_{anti}], 4.68 [m, 2H, C²H]. ³¹P{¹H} NMR (CD₂Cl₂): δ -2.29.

(b) dmpm (16 μ L, 0.10 mmol) was added to a solution of 1 (0.10 g, 0.32 mmol) in CH₂Cl₂ (20 mL) and the mixture was stirred for 15 min. The solution was concentrated to 5 mL, layered with hexane (20 mL) and placed at -20 °C. After several days, orange crystals of 4 were obtained. Yield: 0.03 g, 41%. Anal. Calc. for C₂₂H₃₂Cl₃Mo₃NO₆P₂: C, 28.33; H, 3.45. Found: C, 28.26; H, 3.65%. IR (v_{CO}) (CH₂Cl₂): 1992s, 1935s cm⁻¹. ¹H NMR (CD₂Cl₂): cation [Mo(η³-allyl)(CO)₂(NCMe)-(dmpm)] δ 1.90 [m, 12H, CH₃ dmpm], 2.40 [s, 3H, MeCN], 2.46 $[d, {}^{3}J_{H-H} = 12.13, 2H, H_{anti}], 3.17 [m, 2H, CH_{2} dmpm], 3.75 [d,]$ ${}^{3}J_{\text{H-H}} = 6, 2\text{H}, \text{H}_{syn}$], 5.30 [m, 1H, C²H]. Anion [{Mo- $(\eta^{3}-\text{allyl})(\text{CO})_{2}_{2}(\mu-\text{Cl})_{3}]\delta 0.95 [d, {}^{3}J_{H-H} = 9.6, 4\text{H}, \text{H}_{anti}], 3.46 [d, {}^{3}J_{H-H} = 6.5, 4\text{H}, \text{H}_{syn}], 3.80 [m, 2\text{H}, \text{C}^{2}\text{H}]. {}^{13}\text{C}^{1}\text{H}\} \text{ NMR}$ (CD₂Cl₂): Cation [Mo(η^3 -allyl)(CO)₂(NCMe)(dmpm)] δ 4.52 [s, NCCH₃], 17.80 [m, CH₃ dmpm], 41.71 [t, ${}^{1}J_{C-H} = 27.5$, CH₂ dmpm], 63.19 [s, C^{1,3} allyl], 108.55 [s, C² allyl], 125.03 [s, NCMe], 222.29 [s, CO]. Anion [{Mo(n³-allyl)(CO)₂}₂(µ-Cl)₃] δ 63.78 [s, C^{1,3} allyl], 83.28 [s, C² allyl], 228.86 [s, CO]. ³¹P{¹H} NMR (CD₂Cl₂): δ -24.41.

Preparation of [$\{Mo(\eta^3-C_3H_5)(CO)_2\}_2(\mu-Cl)_2(\mu-tedip)$] (5)

Tedip (0.16 mmol, 40 µL) was added to a solution of [MoCl- $(\eta^3-C_3H_3)(CO)_2(NCMe)_2$] (0.32 mmol, 0.10 g) in CH₂Cl₂ (20 mL). The color of the solution changed immediately from yellow to red. The solution was concentrated *in vacuo* to 2 mL and hexane was added, causing the precipitation of a red solid which was washed with hexane and dried *in vacuo*. Yield: 0.20 g, 86%. Slow diffusion of hexanes onto a concentrated solution of **5** in THF afforded red crystals, one of which was used for a structural determination by X-ray diffraction. Anal. Calc. for C₁₈H₃₀Cl₂Mo₂O₉P₂: C, 30.23; H, 4.22. Found: C, 30.02; H, 4.53%. IR (ν_{CO}) (CH₂Cl₂): 1948s, 1863s cm⁻¹. ¹H NMR (CD₂Cl₂): δ 1.43 [t, ²J_{H-P} = 7, 12H, CH₃], 1.83 [d, ³J_{H-H} = 10.7, 4H, H_{anti}], 3.82 [d, ³J_{H-H} = 6.7, 4H, H_{syn}], 3.90 [m, 8H, CH₂], 4.49 [m, 2H, C²H]. ¹³C NMR (CD₂Cl₂): δ 16.46 [s, CH₃], 62.99 [s, CH₂], 64.83 [s, C^{1,3} allyl], 74.09 [s, C² allyl], 223.57 [at, ³J_{C-P} = 7.9, CO]. ³¹P{¹H} NMR (CD₂Cl₂): δ 127.29.

Reaction of 1 with dppm

A mixture of dppm (0.24 mmol, 0.09 g) and $[MoCl(\eta^3-C_3H_5)-$ (CO)₂(NCMe)₂] (1) (0.48 mmol, 0.15 g) was charged in a Schlenk flask along with a stirbar. After three vacuum-nitrogen cycles, CH₂Cl₂ (30 mL) was added. NMR samples were taken at 1 h intervals by charging 0.5 mL amounts of this reaction mixture into 5 mm NMR tubes containing capillary inserts filled with D₂O as lock signal. ³¹P NMR monitoring indicated initial (1 h) predominance of $[MoCl(\eta^3-allyl)(CO)_2(dppm)]$ (6) (singlet at -2.03 ppm) and small amounts of $[{Mo(\eta^3-C_3H_5)(CO)_2}_2 (\mu$ -Cl)₂ $(\mu$ -dppm)] (7) and [Mo(NCMe)(η^3 -C₃H₅)(CO)₂(dppm)]- $[{Mo(\eta^3-C_3H_5)(CO)_2}_2(\mu-Cl)_3]$ (8) (singlets at 13.02 and -2.33 ppm, respectively). After 1 day, the mixture contains similar amounts of 6 and 7 and a small amount of 8. After 1 week the major product (approximately 70%) is 7. At this point the orange solution was filtered through diatomaceous earth, concentrated to a volume of 5 mL and layered with hexane. A mixture of yellow crystals of 6 and orange crystals of 7 was obtained, which were separated by hand under a microscope and characterized by NMR spectroscopy and X-ray diffraction. The spectroscopic data of 6 coincide with those reported by Faller et al.3c

7: Yield: 0.13 g, 64%. Anal. Calc. for $C_{35}H_{32}Cl_2Mo_2O_4P_2$: C, 49.96; H, 3.83. Found C, 49.79; H, 3.75%. IR (ν_{CO}) (CH₂Cl₂): 1940vs, 1854s cm⁻¹; ¹H NMR (CD₂Cl₂): δ 1.74 [d, ³J_{H-H} = 10, 4H, H_{anti}], 3.52 [t, ²J_{H-P} = 11.5, 2H, CH₂ dppm], 3.85 [d, ³J_{HH} = 7, 4H, H_{syn}], 4.66 [m, 2H, C²H], 7.29 [m, 20H, Ph of dppm]. ³¹P{¹H} NMR (CD₂Cl₂): δ 13.20.

X-Ray crystallographic study

Data in common: Bruker AXS SMART 1000 CCD diffractometer, ϕ and ω scans, Mo-K α radiation ($\lambda = 0.71073$ Å), graphite monochromator, T = 295 K. Raw frame data were integrated with the SAINT¹⁰ program. Structures were solved by direct methods with SHELXTL.¹¹ Semi-empirical absorption correction was done with SADABS.¹² All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were set in calculated positions and refined as riding atoms, with a common thermal parameter. All calculations were made with SHELXTL.

Crystal data

3: $C_{15}H_{24}Cl_2Mo_2O_4P_2$, M = 593.06, orthorhombic, space group *Pnma*, a = 11.8955(11), b = 19.191(6), c = 9.294(2) Å, U = 2121.8(9) Å³, T = 293 K, Z = 4, λ (Mo-K α) = 0.71073 mm⁻¹, 2142 reflections measured, 2142 unique ($R_{int} = 0.0287$), wR2 = 0.0918.

4: $C_{22}H_{32}Cl_3Mo_3NO_6P_2$, M = 843.57, monoclinic, space group $P2_1/c$, a = 9.6225(4), b = 16.2346(7), c = 21.4232(7) Å, $\beta = 93.951(2)^\circ$, U = 3338.7(2) Å³, T = 293 K, Z = 4, λ (Cu-K α) = 1.54184 mm⁻¹, 5465 reflections measured, 3526 unique ($R_{int} = 0.0675$), wR2 = 0.1844.

5: $C_{18}H_{30}Cl_2Mo_2O_9P_2$, M = 715.14, monoclinic, space group $P2_1/c$, a = 10.050(7), b = 11.580(9), c = 23.320(11) Å, $\beta = 97.82(3)^\circ$, U = 2689(3) Å³, T = 293 K, Z = 4, λ (Cu-K α) = 1.54184 mm⁻¹, 3961 reflections measured, 2992 unique ($R_{int} = 0.0672$), wR2 = 0.1726.

6: $C_{34}H_{35}CIMoO_3P_2$, M = 684.95, monoclinic, space group $P2_1/c$, a = 15.119(5), b = 10.830(5), c = 23.494(5) Å, $\beta = 123.229(5)^\circ$, U = 3218(2) Å³, T = 293 K, Z = 4, λ (Cu-K α) = 1.54084 mm⁻¹, 11578 reflections measured, 6058 unique ($R_{int} = 0.0365$), wR2 = 0.0863.

7: $C_{36}H_{33}Cl_2NMo_2O_4P_2$, M = 868.35, monoclinic, space group $P2_1/c$, a = 14.763(5), b = 15.343(5), c = 17.538(5) Å, $\beta = 114.96(5)^\circ$, U = 3601(2) Å³, T = 293 K, Z = 4, λ (Cu-K α) = 1.54184 mm⁻¹, 6752 reflections measured, 6752 unique ($R_{int} = 0.0375$), wR2 = 0.0836.

CCDC reference numbers 196132-196136.

See http://www.rsc.org/suppdata/dt/b3/b300350g/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We thank Ministerio de Ciencia y Tecnología (grants BQU2000-0220 and BQU2000-0219) and Principado de Asturias (grants PR-01-GE-7 and PR-01-GE-4) for support of this work.

References

- 1 J. Pérez, V. Riera, A. Rodríguez and S. García-Granda, Angew. Chem., Int. Ed., 2002, 41, 1427.
- 2 H. tom Dieck and H. Friedel, J. Organomet. Chem., 1968, 14, 375.
- 3 (a) P. K. Baker, Adv. Organomet. Chem., 1996, 40, 46; (b) J. W. Goodyear, C. W. Hemingway, R. W. Harrington, M. R. Wiseman and B. J. Brisdon, J. Organomet. Chem., 2002, 664, 176; (c) of particular relevance to the work reported here is the following paper, which deals with the synthesis and characterization of diphosphane complexes: J. W. Faller, D. A. Haitko, R. D. Adams and D. F. Chodosh, J. Am. Chem. Soc., 1979, 114, 865; (d) for a different way to access Mo-allyl compounds see: A. G. W. Hodson, R. K. Thind and M. McPartlin, J. Organomet. Chem., 2002, 664, 277.
- 4 S. W. Kirtley, in *Comprehensive Organometallic Chemistry*, ed. G. Wilkinson, F. G. A. Stone and E. Abel, Pergamon, Oxford, 1982, vol. 3, p. 1091.
- 5 M. D. Curtis and O. Eisenstein, Organometallics, 1984, 3, 887.
- 6 (a) M. G. Drew, B. J. Brisdon and M. Cartwright, *Inorg. Chim.* Acta., 1979, **36**, 127; (b) for other compounds with this bimetallic anion, see: P. Pinto, E. Barranco, M. J. Calhorda, V. Félix and M. G. B. Drew, J. Organomet. Chem., 2000, **601**, 34.
- 7 For examples of crystallographically characterized [Mo(η³-allyl)-(NCMe)(CO)₂(P–P)]⁺ compounds, see: (*a*) G.-H. Lee, S.-M. Peng, F.-Ch. Liu, D. Mu and R.-S. Liu, *Organometallics*, 1989, **8**, 402; (*b*) S.-F. Lush, S.-H. Wang, G.-H. Lee, S.-M. Peng, S.-L. Wang and R.-S. Liu, *Organometallics*, 1990, **9**, 1862.
- 8 F. A. Cotton, E. V. Dikarev and S. Herrero, *Inorg. Chem.*, 1999, 38, 490.
- 9 B. M. Trost and M. Lautens, J. Am. Chem. Soc., 1982, 104, 5543.
- 10 SAINT+. SAX area detector integration program. Version 6.02. Bruker AXS, Inc. Madison, WI, 1999.
- 11 G. M. Sheldrick, SHELXTL, an integrated system for solving, refining, and displaying crystal structures from diffraction data. Version 5.1. Bruker AXS, Inc. Madison, WI, 1998.
- 12 G. M. Sheldrick, SADABS, Empirical Absorption Correction Program, University of Göttingen, Göttingen, Germany, 1997.